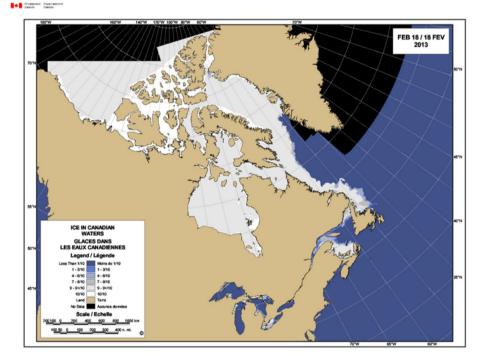


Sea Ice Measurements using GNSS Reflectometry from Nano-Satellites

Peter Kruzlics, Shahid Haider, Jason Pye, Arsalan Alim, Faculty of Engineering, University of Waterloo, Canada


Introduction

WatSat is the University of Waterloo Satellite team and is participating in Canadian Satellite Design Challenge (CSDC) which is a 2 year challenge to design and build a 3U nano-satellite (10cm x 10cm x 34cm, <4kg) that would survive 1 year in orbit.

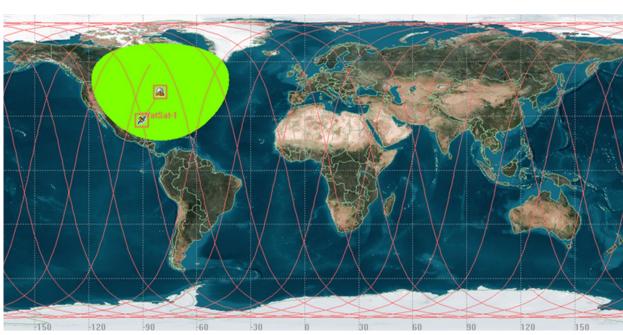
WatSat has entered the next CSDC and has begun redesigning the satellite as of October 2014. The team is comprised of 35 undergraduate and graduate students.

Importance and Application

Shipping & Navigation

Ocean

extraction


- Northwest Passage reduces shipping distance between Asia and Europe / North America
- Gulf of St. Lawrence busiest shipping lane in Canada

• Large oil and gas reserves under the Arctic

Melting ice opens up the Arctic for resource

Oil, Gas, & Mineral Exploration

Orbit Characteristics

Satellite Systems

ADCS

- +/- 10° designed control accuracy
- Actuation done with Magnetorquers

- 10:30 AM/PM Equatorial Crossing Time
- Sun-synchronous 700km orbit
- Communication with satellite: 5-6x / day
- Communication with satellite: ~36min / day

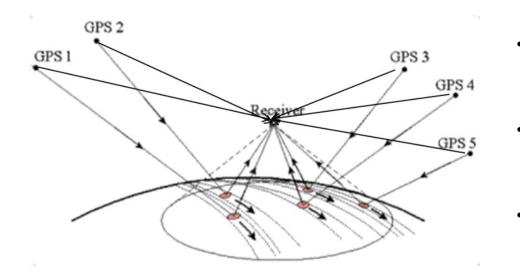
Communications

- S-Band 2.4GHz @ 230kbps
- ~60 MB / day

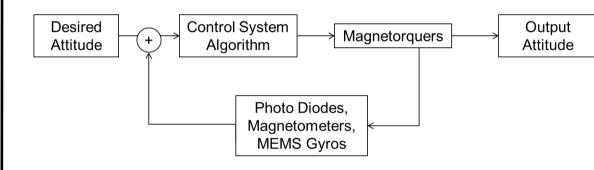
Target Areas

Northwest Passage

Ice thickness for ships navigating passage

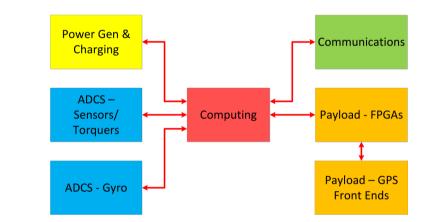

Labrador Sea

Ice flows coming from Arctic into shipping • lanes

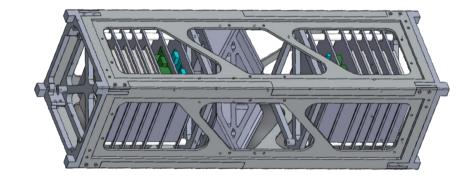

Gulf of St. Lawrence

Ice concentration in Canada's main shipping passage

GNSS Reflectometry Payload



- Satellite detects direct and reflecting GPS signals
- Specular points create swaths of coverage over target areas
- Two 4dB patch antennas: one Zenith facing, one Nadir facing


Computing

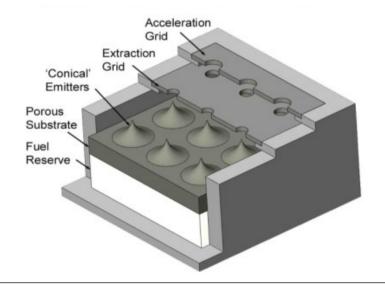
- **1GHz ARM Processor**
- 256MB RAM with 64GB storage
- Linux kernel

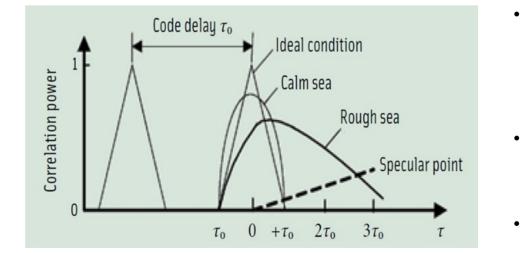
Structure

- **Stacked PCB interior**
- Aluminum 6061 exterior
- PCB exterior panels for solar cells and sensors

Implementation & Timeline

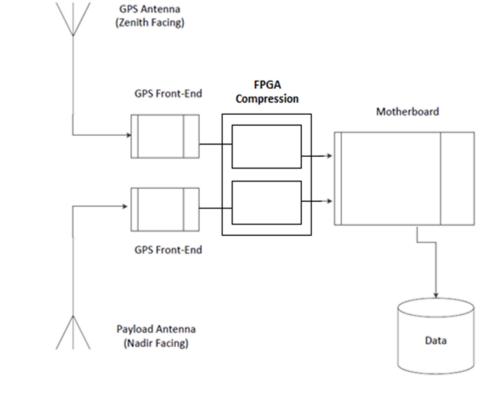
Task Name	20	2015							2016							2017							2018							
	S C	D N D	JF	MA	MJ	J	A S (O N	L D	FM	AN	IJ	JA	S C	NI	L D	FN	ΛA	M	J	AS	6 0	N D	J	FM	Α	МJ	JA	S O) N [
1 Competition Kickoff																														
2 Project Management Plan																														
3 Preliminary Design Review Prep.																														
4 Critical Design Review Prep.																														
5 Assembly																														
5 Satellite Testing																														
7 Projected Launch																														
Projected Satellite Mission																+					-									


Power


- (20) 28.3% solar cells
- 2 Li batteries (26WHr)

Propulsion (future)

Ion electrospray thruster system to help lengthen mission or de-orbit sooner



Reflected signal correlated with clean signal

- creates different profiles depending on reflecting surface
- (Left) Technique has been used to classify different sea conditions
- Tested prior to launch using aerial platform

WatSat will be participating in the next CSDC, satellite will be completed by 2016

- 34MB/s of raw GPS Data generated by GPS Front Ends
- FPGAs run lossless LZ4 compression algorithm to reduce file sizes
- Stored compressed onboard, decompressed once transmitted to ground
 - Main satellite computer handles turning on and shutting down system